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About Adjust

Adjust is a market leader in mobile
advertisement attribution. We basically
act as a referee in pay-per-install
advertising. We focus on fairness,
fraud-prevention and other ways of
ensuring that advertisers pay for the
services they receiving fairly and with
accountability.
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Basic Facts About Us

• We are a PostgreSQL/Kafka shop

• Around 200 employees worldwide

• Link advertisements to installs

• Delivering near-real-time analytics to software vendors

• Our Data is “Big Data”
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Just How Big?

• Over 100k requests per second

• Over 2 trillion data points tracked in 2017

• Over 400 TB of data to analyze

• Very high data velocity
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General Architecture

• Requests come from Internet

• Written to backends

• Materialized to analytics
shards

• Shown in dashboard
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Common Elements of Infrastructure

• Bare metal

• Stripped down Gentoo

• Lots of A/B performance testing

• Approx 50% more throughput than stock Linux systems

• Standard PostgreSQL + extensions
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Backend Servers

• Original point of entry

• Data distributed by load balancer

• No data-dependent routing.

• Data distributed more or less randomly

• Around 20TB per backend server gets stored.

• More than 20 backend servers
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Materializer

• Aggregates new events

• Copies the aggregations to the shards

• Runs every few minutes

• New data only
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Materializer and MapReduce

Our materializer aggregates data from many servers and transfers
it to many servers. It functions sort of like a mapreduce with the
added complication that it is a many server to many server
transformation.
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Analytics Shards

• Each about 2TB each

• 16 shards currently, may grow

• Our own custom analytics software for managing and querying

• Custom sharding/locating software

• Paired for redundancy
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Staffing: Challenges

• No Junior Database Folks

• Demanding environment

• Very little room for error

• Need people who are deeply grounded in both theory and
practice
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Staffing: Solutions

• Look for people with enough relevant experience they can
learn

• Be picky with what we are willing to teach new folks

• Look for self-learners with enough knowledge to participate

• Expect people to grow into the role

• We also use code challenges
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Throughput challenges

• Most data is new

• It is a lot of data

• Lots of btrees with lots of random inserts

• Ideally, every wrote inserted once and updated once

• Long-term retention
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Throughput Solutions
Backend Servers

• Each point of entry server has its own database

• Transactional processing is separate.

• Careful attention to alignment issues

• We write our own data types in C to help

• Tables partitioned by event time
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Throughput Solutions
Analytics Shards

• Pre-aggregated data for client-facing metrics

• Sharded at roughly 2TB per shard

• 16 shards currently

• Custom sharding framework optimized to reduce network
usage

• Goal is to have dashboards load fast.

• We know where data is on these shards.
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Throughput Solutions
Materializer

• Two phases

• First phase runs on original entry servers

• Aggregates and copies data to analytics shards

• Second phase runs on analytics shards

• further aggregates and copies.
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Materializer: A Special Problem

• Works great when you only have one data center

• Foreign data wrapper bulk writes are very slow across data
centers

• This is a known issue with the Postgres FDW

• This is a blocking issue.
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Materializer: Solution

• C extension using COPY

• Acts as libpq client

• Wrote a global transaction manager

• Throughput restored.
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Introducing Autovacuum

• Queries have to provide consistent snapshots

• All updates in PostgreSQL are copy-on-write

• In our case, we write once and then update once.

• Have to clean up old data at some point

• By default, 50 rows plus 20% of table being “dead” triggers
autovacuum
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Autovacuum problems

• For small tables, great but we have tables with 200M rows

• 20% of 200M rows is 40 million dead tuples....

• Autovacuum does nothing and then undertakes a heavy
task....

• performance suffers and tables bloat.
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Autovacuum Solutions

• Change to 150k rows plus 0%

• Tuning requires a lot of hand-holding

• Roll out change to servers gradually to avoid overloading
system.
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Why it Matters

• Under heavy load, painful to change

• Want to avoid rewriting tables

• Want to minimize disk usage

• Want to maximize alignment to pages

• Lots of little details really matter
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Custom 1-byte Enums

• Country

• Language

• OS Name

• Device Type
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IStore
Like HStore but for Integers

• Like HStore but for integers

• Supports addition, etc, between values of same key

• Useful for time series and other modelling problems

• Supports GIN indexing among others
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The Elephant in the Room
How do we aggregate that much data?

• Basically incremental Map Reduce

• Map and first phase aggregation on backends

• Reduce and second phase aggregation on shards

• Further reduction and aggregation possible on demand
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Operations Tools

• Sqitch

• Rex

• Our own custom tools
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Backups

• Home grown system

• Base backup plus WAL

• Runs as a Rex task

• We can also do logical backups (but...)
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Ongoing Distributed Challenges

• Major Upgrades

• Storage Space

• Multi-datacenter challenges

• Making it all fast
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Overview

This environment is all about careful attention to detail and being
willing to write C code when needed. Space savings, better
alignment, and other seemingly small gains add up over tens of
billions of rows.
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Major Points of Interest

• We are using PostgreSQL as a big data platform.

• We expect this architecture to scale very far.

• Provides near-real-time analytics on user actions.
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PostgreSQL makes all this Possible

In buiding our 400TB analytics environment we have yet to
outgrow PostgreSQL. In fact, this is one of the few pieces of our
infrastructure we are perfectly confident in scaling.
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